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Abstract

A hypergraph H = (X,D) is said to be a T2 hypergraph if for any three distinct vertices u, v
and w inH, there exist a hyperedge containing u, v but not w and another hyperedge containing
w but not u andv. In this article, the adjacency energy of a T2 hypergraph is studied. It is shown

that, ǫ(H) >
√

w(H)
n

.
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1 Introduction

The basic definitions and terminalogies of a hypergraph are not given here and we refer it [3] and [13].
The concept of hypergraph was introduced by Berge in 1967. Later the same concept was studied by
different authors in [13] and [1], Seena V and Raji Pilakkat were introduced Hausdroff hypergraph,
T0 hypergraph and T1 hypergraph. Based on [10] and [11] we introduced a new class of hypergraph
namely T2 hypergraph is studied the parameter adjacency energy of a hpergraph. Throughout this
article H = T2 is a simple connected hypergraph with order n and size m. Here the order and size are
the minimum number of vertices and edges used to define a T2 hypergraph. The following definitions
and theorems are used in sequel.

Definition 1.1. [9] A hypergraph H = (X,D)is said to be a Hausdroff hypergraph if for any two
distinct vertices u, v of X there exist hyperedges D1 and D2 ∈ D such that u ∈ D1 , v ∈ D2 and
D1 ∩ D2 = φ.

Definition 1.2. [10] A hypergraph H = (X,D)is said to be a T0 hypergraph if for any two distinct
vertices u and v of X there exist a hyperedge containing one of them but not the other.

Definition 1.3. [11] A hypergraph H = (X,D) is said to be a T1 hypergraph if for any two distinct
vertices u andv of X there exist a hyperedge containing u but not v and another hyperedge containing
v but not u.

Definition 1.4. [2] The Wiener index W (H) is defined by W (H) =
∑

u,v∈X(H)

dH(u, v).

Definition 1.5. [12] The Gutman index is defined as GutH =
∑

u,v∈X(H)

dH(u, v)dH(u)dH(v)

Definition 1.6. [6] The rank of a hypergraph is the maximum cardinality of any of the edges in the
hypergraph.

Definition 1.7. [6] The number of edges of a hypergraph H that are incident to a given vertex is
called the degree of the vertex.
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Definition 1.8. [7] The adjacency matrix is the square matrix which rows and columns are indexed
by the vertices of H and where for all u, v ∈ X,u 6= v, auv = |{d ∈ D/u, v ∈ D}| and auu = 0.

Theorem 1.9. [4] For a graph G on n vertices and m edges, E(G) ≤ 2m
n +

√

(n− 1)[2m− (2mn )2].

Result 1.10. (i) The minimum number of edges need to define a T2 hypergraph is m=
[
2n+5

4

]
where

n is the number of vertices.

(ii) For a T2 hypergaph H, the minimum degree δ(H) = 2.

(iii) For a T2 hypergraph H, rank r =
[
2n+1

4

]
where n ≥ 3.

2 T2 Hypergraph

Based on T0 and T1 hypergraphs, a class of hypergraph namely T2 hypergraph is defined in the
following way and is observed some of its properties.

Definition 2.1. A hypergraph H = (X,D) is said to be a T2 hypergraph if for any three distinct
vertices u, v and w in H there exist a hyperedge containing u and v but not w and another hyperedge
containing w but not u and v.

Result 2.2. (i) The minimum number of edges need to define a T2 hypergraph is m=
[
2n+5

4

]
where

n is the number of vertices.

(ii) For a T2 hypergaph H, the minimum degree δ(H) = 2.

(iii) For a T2 hypergraph H, rank r =
[
2n+1

4

]
where n ≥ 3.

3 The adjacency energy of a T2 hypergraph

Adjacency energy of a hypergraph is introduced by Kaue Cardoso and Vilmar Trevisan in [6]. The
definition is studied from [7]. In this section we find the Adjacency energy of a T2 hypergaph.

Theorem 3.1. If H = (X,D) is a T2 hypergraph with n vertices and m edges, then

ǫ(H) >

√

δ
n∑

i=1

n∑

j=1
(aij)2.

Proof. (ǫ(H))2 = (
n∑

i=1
λi)

2 ≥
n∑

i=1
λ2i > 2

n∑

i=1

n∑

j=1
(aij)

2 > δ
n∑

i=1

n∑

j=1
(aij)

2.

Thus ǫ(H) >

√

δ
n∑

i=1

n∑

j=1
(aij)2.

Theorem 3.2. Let H = (X,D) be a T2 hypergraph with maximum degree ∆. If n ≥ 5 then ǫ(H) ≤
√

n(∆− 1)G(H) < n
√

(∆2 −∆)W (H) equality hold only if H is a T2 hypergraph with n=3 and
∆ = 2.

Proof. Let λ1, λ2, . . . λn be the eigenvalues of A(H), then
n∑

i=1
λ2i =

n∑

i=1

n∑

j=1
(aij)

2 ≤
n∑

i=1

[

d(i)2 +
∑m

j=1(aij)
2
]

≤ (∆− 1)
∑n

i=1 d(i)d(j)d(i, j) ≤ (∆− 1)G(H).

Now ǫ(H)2 =
n∑

i=1
λ2i ≤ n

n∑

i=1
λ2i ≤ n(∆− 1)G(H).

G(H) < n∆W (H)

G(H) ≤
√

n(∆− 1)G(H) <
√

n(∆− 1)n∆W (H)

G(H) ≤
√

n(∆− 1)G(H) < n
√

(∆2 −∆)W (H).
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Theorem 3.3. Let H be a T2 hypergraph with maximum degree ∆ and |v| = n then

ǫ(H) ≤ λ1 +
√

(n− 1)
[
(∆− 1)G(H)− λ21

]
.

Proof. We have
∑n

i=1 λ
2
i = λ21 +

n∑

i=2
λ2i and so

n∑

i=1
λ2i ≤ (∆− 1)G(H)

ǫ(H) = λ1 +
n∑

i=2
λ2i .

This gives that ǫ(H)− λ1 =
∑n

i=2 λ
2
i .

(ǫ(H)− λ1)
2 ≤ (

n∑

i=2

λ2i )
2

≤ (n− 1)
n∑

i=2

λ2i

= (n− 1)(∆− 1)G(H)− λ21

ǫ(H)− λ1 ≤
√

(n− 1)(∆− 1)G(H)− λ21

ǫ(H) ≤ λ21 +
√

(n− 1)(∆− 1)G(H)− λ21.

Theorem 3.4. If H is a T2 hypergraph with rank r and maximum degree ∆ then ǫ(H) ≥
√

n(∆− 1)r
equality hold if H is a hypergraph with ∆ = m = n = 3.

Proof. From lemma (25) in [6]

(ǫ(H))2 ≥ 2(
n∑

i=1

λ2i )

≥ 2
n∑

i=1

m∑

j=1

(aij)
2

≥ 2
n∑

i=1

m∑

j=1

(aij)

≥ n(∆− 1)r

ǫ(H) ≥
√

n(∆− 1)r.

Theorem 3.5. If H is a T2 hypergraph then

ǫ(H) ≥
√

(
n∑

i=1
λ2i ) + (16m

2−48m+35
4 )(detA)|

4
4m−5

| equality hold if m=3.

Proof. The result immediately follows from (lemma30) in [6].

Theorem 3.6. Let H be a T2 hypergraph with rank r and |v| = n then ǫ(H) ≥
√

(r−1)2

n W (H) equality
hold if H is a 3-uniform hpergraph with one edge.
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Proof. From (lemma25) in [6]

ǫ(H)2 ≥ 2
n∑

i=1

λ2i

≥
n∑

i=1

λ2i

=
n∑

i=1

m∑

j=1

(aij)
2

≥
n∑

i=1

| 1
n
(

m∑

i=1

(aij)
2|

≥ 4
(r − 1)2

n
W (H)

≥ 2

√

(r − 1)2

n
W (H)

Theorem 3.7. Let H be a T2 hypergraph with rank r and |v| = n then ǫ(H) ≥
√

(r−1)2

n W (H) equality
hold if H is a 3-uniform hpergraph with one edge.

Proof. From (lemma25) in [6]

ǫ(H)2 ≥ 2
n∑

i=1

λ2i

≥
n∑

i=1

λ2i

=
n∑

i=1

m∑

j=1

(aij)
2

≥
n∑

i=1

| 1
n
(

m∑

i=1

(aij)
2|

≥ 4
(r − 1)2

n
W (H)

≥ 2

√

(r − 1)2

n
W (H)

Theorem 3.8. Let H be a T2 hypergraph with minimum degree δ and |v|=n then ǫ(H)2 > W (H)
n .

Proof. From (lemma25) in [6]

ǫ(H)2 ≥ 2

n∑

i=1

λ2i

≥
n∑

i=1

λ2i

>
n∑

j=1

[| 1

m(m− 1)
(

n∑

i=1

aij)
2|]

>
W (H)

n
.
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Lemma 3.9. Let H be a T2 hypergraph with n ≥ 4 and m edges then ρ(A) ≥ 2n+13
2(n−1)

Theorem 3.10. Let H be a T2 hypergraph with n ≥ 4 then ǫ(H) ≥ 2n+13
2(n−1)+(n−1)+ln |detA|−ln 2n+13

2(n−1)
equality hold if H is a 3-uniform hypergraph with one edge.

Proof. We have

ǫ(H) =

n∑

i=1

λi

= λ1 +
n∑

i=2

λi

≥ λ1 + (n− 1) +
n∑

i=2

ln |λi|

= λ1 + (n− 1) + ln
n∏

i=2

λi

= λ1 + (n− 1) + ln(detA)− lnλ1.

From lemma 3.9

ǫ(H) ≥ 2n+ 13

2(n− 1)
+ (n− 1) + ln |detA| − ln

2n+ 13

2(n− 1)
.

Theorem 3.11. Let H be a T2 k-graph on n vertices and m edges. Then

ǫ(H) =≤ ρ(A) +
√

(n− 1)(nm− ρ(A),

where ρ(A) is the spectral radius of the adjacency matrix.

Proof. In T2 − k-graph, by using Cauchy Schwart inequality

n∑

i=1

λi ≤ nm

ρ(A) +

n∑

i=2

λi ≤ nm

n∑

i=2

λi ≤ nm− ρ(A)

ǫ(H) ≤ ρ(A) +
n∑

i=2

λi

≤ ρ(A) +

√
√
√
√(n− 1)

n∑

i=2

λi

≤
√

ρ(A) + (n− 1)(nm− ρ(A)).

Lemma 3.12. Let H be a connected T2 k-graph and A(H) its adjacency matrix. The hypergraph H
is regular iff x = (1 1 1 . . . 1)T



322 International Conference on Discrete Mathematics (ICDM2021-MSU) ISBN 978-93-91077-53-2

Theorem 3.13. Let H be a connected T2 k-graph and A(H) its adjacency matrix then ρ(A) ≤ KW (H)√
n

equality holds if H is regular.

Proof. In T2 k-graph

ρ(A) =
√

ρ(A)2

≤
√
XTA2X

≤
√

(K
∑
d(u, v))2

n

=
KW (H)√

n
.

Remark 3.1. Let H be a T2 hypergraph with rank r, minimum degree δ and |v| = n then

(i)
∑n

i=1 λ
2
i ≥ n(r − 1)δ(H)

(ii)
∑n

i=1 λ
2
i ≥ (r−1)2

3n W (H).

(iii)
∑n

i=1 λ
2
i ≥ m

m−1λ1.

(iv)
∑n

i=1 λ
2
i ≥ nm

n+m−1λ1.

Theorem 3.14. If H is a T2 hypergraph then

ǫ(H) ≥
√

(n(r − 1))δ(H) + (16m
2−48m+35

4 )(detA)|
4

4m−5
|.

Proof. Use theorem 3.5 and remark 3.1

4 Conclusion

In this article, the adjacency energy of a T2 hypergraph is obtained by using various graph parameters
such as size m, rank r, Wiener index, Gutman index, maximum degree, minimum degree, spectral
radius etc. In a similar way we can use other parameter also for calculating the adjacency energy of
a T2 hypergraph.
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