Pre-Conference Proceedings of the International Conference on Discrete Mathematics (ICDM2021-MSU)

Editors : R. Kala, S. Monikandan, K. Selvakumar and T. Tamizh Chelvam

Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 627012, Tamilnadu, INDIA

37	C. Sankari, R. Sangeetha and K. Arthi Claw – decomposition of Kneser graph $KG_{n,3}$	247 - 253
38	P. Arul Paul Sudhahar and W. Jebi Nonsplit edge monophonic domination number of a graph	254 - 260
39	S.K. Vaidya and G.K. Rathod On general randic energy of graphs	261 - 268
40	Sheeba Agnes and R. Geethanjaliyadav Rupture degree of some classes of graphs	269 - 279
41	P. Arul Paul Sudhahar and J. Jeba Lisa Minimal nonsplit geodetic domination number of a graph	280 - 287
42	K. Selvakumar and P. Subbulakshmi On the crosscap of a graph associated to a commutative ring	288 - 298
43	S.L. Sumi, V. Mary Gleeta and J. Befija Minnie The geodetic cototal domination number of a graph	299 - 307
44	K. Prabha Ananthi and T. Tamizh Chelvam On the reduced non - zero component graph of semi-modules	308 - 316
45	S. Sujitha and D. Sharmila The Adjacency Energy of a T2 Hypergraph	317 - 323
46	S. Santha and $G.T.$ Krishna Veni Inverse domination of the transformation of n-sunlet graph	324 - 327
47	S. Sujitha and L. Mary Jenitha The 3 – component connectivity number of an arithmetic graph	328 - 333
48	K. Reji Kumar and E.N. Satheesh On the edge – vertex roman domination of graphs	334 - 339
49	J. Ashwini, S. Pethanachi Selvam and R. B. Gnanajothi Various versions of lucky labelling of book graphs	340 - 346
50	C.M. Deshpande, Y.S. Gaidhani and B.P. Athawale Circulant semigraphs	347 - 354
51	Anjali Yadav and S. Minirani Distance antimagic labelling of some graphs	355 - 357
52	S.S. Sandhya and H. Aswathy More results on root square mean labelling of graphs	358 - 359
53	T. Sathiyanandham and S. Arokiaraj C – average eccentric graphs	360 - 365
54	T. Tamizh Chelvam, M. Balamurugan and S. Anukumar Kathirvel Connectivity of the complement of generalized total graph of finite fields	366 - 370
55	B. Chandra and R. Kala Group S3 cordial prime labeling of some Shadow graphs	371 - 383
56	<i>M. Sree Vidya</i> and <i>S.S. Sandhya</i> Double continuous monotonic decomposition of Stolarsky 3 mean graphs	384 - 389
57	C. Gayathri and S. Saravanakumar Equitable Irregular Edge-Weighting of Polar Grid Graph and Mongolian Tent Graph	390 - 396

International Conference on Discrete Mathematics (ICDM2021-MSU) ISBN 978-93-91077-53-2 Editors: R. Kala, S. Monikandan, K. Selvakumar, V. Sankar Raj and T. Tamizh Chelvam Copyright © 2021, Manonmaniam Sundaranar University

The Adjacency Energy of a T₂ Hypergraph

S. Sujitha¹ and D. Sharmila²

¹ Department of Mathematics Manonmaniam Sundaranar University Tirunelveli, Tamil nadu, India ² Department of Mathematics Holy Cross College (Autonomous), Nagercoil, India ¹ sharmilareegan10@gmail.com, ²sujitha.s@holycrossngl.edu.in

Abstract

A hypergraph H = (X, D) is said to be a T_2 hypergraph if for any three distinct vertices u, vand w in H, there exist a hyperedge containing u, v but not w and another hyperedge containing w but not u and v. In this article, the adjacency energy of a T_2 hypergraph is studied. It is shown that, $\epsilon(H) > \sqrt{\frac{w(H)}{n}}$.

Keywords: T_2 hypergraph, Adjacency matrix, Adjacency energy. Subject Classification: 05C65

1 Introduction

The basic definitions and terminalogies of a hypergraph are not given here and we refer it [3] and [13]. The concept of hypergraph was introduced by Berge in 1967. Later the same concept was studied by different authors in [13] and [1], Seena V and Raji Pilakkat were introduced Hausdroff hypergraph, T_0 hypergraph and T_1 hypergraph. Based on [10] and [11] we introduced a new class of hypergraph namely T_2 hypergraph is studied the parameter adjacency energy of a hpergraph. Throughout this article $H = T_2$ is a simple connected hypergraph with order n and size m. Here the order and size are the minimum number of vertices and edges used to define a T_2 hypergraph. The following definitions and theorems are used in sequel.

Definition 1.1. [9] A hypergraph H = (X, D) is said to be a Hausdroff hypergraph if for any two distinct vertices u, v of X there exist hyperedges D_1 and $D_2 \in D$ such that $u \in D_1$, $v \in D_2$ and $D_1 \cap D_2 = \phi$.

Definition 1.2. [10] A hypergraph H = (X, D) is said to be a T_0 hypergraph if for any two distinct vertices u and v of X there exist a hyperedge containing one of them but not the other.

Definition 1.3. [11] A hypergraph H = (X, D) is said to be a T_1 hypergraph if for any two distinct vertices u and v of X there exist a hyperedge containing u but not v and another hyperedge containing v but not u.

Definition 1.4. [2] The Wiener index W(H) is defined by $W(H) = \sum_{u,v \in X(H)} d_H(u,v)$.

Definition 1.5. [12] The Gutman index is defined as $GutH = \sum_{u,v \in X(H)} d_H(u,v)d_H(u)d_H(v)$

Definition 1.6. [6] The rank of a hypergraph is the maximum cardinality of any of the edges in the hypergraph.

Definition 1.7. [6] The number of edges of a hypergraph H that are incident to a given vertex is called the degree of the vertex.

Definition 1.8. [7] The adjacency matrix is the square matrix which rows and columns are indexed by the vertices of H and where for all $u, v \in X, u \neq v, a_{uv} = |\{d \in D/u, v \in D\}|$ and $a_{uu} = 0$.

Theorem 1.9. [4] For a graph G on n vertices and m edges, $E(G) \leq \frac{2m}{n} + \sqrt{(n-1)[2m - (\frac{2m}{n})^2]}$.

- **Result 1.10.** (i) The minimum number of edges need to define a T_2 hypergraph is $m = \left[\frac{2n+5}{4}\right]$ where n is the number of vertices.
 - (ii) For a T_2 hypergaph H, the minimum degree $\delta(H) = 2$.
- (iii) For a T_2 hypergraph H, rank $r = \left\lceil \frac{2n+1}{4} \right\rceil$ where $n \ge 3$.

2 T_2 Hypergraph

Based on T_0 and T_1 hypergraphs, a class of hypergraph namely T_2 hypergraph is defined in the following way and is observed some of its properties.

Definition 2.1. A hypergraph H = (X, D) is said to be a T_2 hypergraph if for any three distinct vertices u, v and w in H there exist a hyperedge containing u and v but not w and another hyperedge containing w but not u and v.

- **Result 2.2.** (i) The minimum number of edges need to define a T_2 hypergraph is $m = \left[\frac{2n+5}{4}\right]$ where *n* is the number of vertices.
 - (ii) For a T_2 hypergaph H, the minimum degree $\delta(H) = 2$.
- (iii) For a T_2 hypergraph H, rank $r = \left\lceil \frac{2n+1}{4} \right\rceil$ where $n \ge 3$.

3 The adjacency energy of a T_2 hypergraph

Adjacency energy of a hypergraph is introduced by Kaue Cardoso and Vilmar Trevisan in [6]. The definition is studied from [7]. In this section we find the Adjacency energy of a T_2 hypergaph.

Theorem 3.1. If
$$H = (X, D)$$
 is a T_2 hypergraph with n vertices and m edges, then

$$\epsilon(H) > \sqrt{\delta \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij})^2}.$$
Proof. $(\epsilon(H))^2 = (\sum_{i=1}^{n} \lambda_i)^2 \ge \sum_{i=1}^{n} \lambda_i^2 > 2 \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij})^2 > \delta \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij})^2.$
Thus $\epsilon(H) > \sqrt{\delta \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij})^2}.$

Theorem 3.2. Let H = (X, D) be a T_2 hypergraph with maximum degree Δ . If $n \geq 5$ then $\epsilon(H) \leq \sqrt{n(\Delta - 1)G(H)} < n\sqrt{(\Delta^2 - \Delta)W(H)}$ equality hold only if H is a T_2 hypergraph with n=3 and $\Delta = 2$.

Proof. Let
$$\lambda_1, \lambda_2, \dots, \lambda_n$$
 be the eigenvalues of $A(H)$, then

$$\sum_{i=1}^n \lambda_i^2 = \sum_{i=1}^n \sum_{j=1}^n (a_{ij})^2 \leq \sum_{i=1}^n \left[d(i)^2 + \sum_{j=1}^m (a_{ij})^2 \right]$$

$$\leq (\Delta - 1) \sum_{i=1}^n d(i) d(j) d(i, j) \leq (\Delta - 1) G(H).$$
Now $\epsilon(H)^2 = \sum_{i=1}^n \lambda_i^2 \leq n \sum_{i=1}^n \lambda_i^2 \leq n(\Delta - 1) G(H).$

$$G(H) < n\Delta W(H)$$

$$G(H) \leq \sqrt{n(\Delta - 1)G(H)} < \sqrt{n(\Delta - 1)n\Delta W(H)}$$

$$G(H) \leq \sqrt{n(\Delta - 1)G(H)} < n\sqrt{(\Delta^2 - \Delta)W(H)}.$$

Theorem 3.3. Let H be a T_2 hypergraph with maximum degree Δ and |v| = n then $\epsilon(H) \leq \lambda_1 + \sqrt{(n-1)\left[(\Delta-1)G(H) - \lambda_1^2\right]}$.

Proof. We have $\sum_{i=1}^{n} \lambda_i^2 = \lambda_1^2 + \sum_{i=2}^{n} \lambda_i^2$ and so $\sum_{i=1}^{n} \lambda_i^2 \leq (\Delta - 1)G(H)$ $\epsilon(H) = \lambda_1 + \sum_{i=2}^{n} \lambda_i^2$. This gives that $\epsilon(H) - \lambda_1 = \sum_{i=2}^{n} \lambda_i^2$.

$$(\epsilon(H) - \lambda_1)^2 \leq (\sum_{i=2}^n \lambda_i^2)^2$$

$$\leq (n-1)\sum_{i=2}^n \lambda_i^2$$

$$= (n-1)(\Delta - 1)G(H) - \lambda_1^2$$

$$\epsilon(H) - \lambda_1 \leq \sqrt{(n-1)(\Delta - 1)G(H) - \lambda_1^2}$$

$$\epsilon(H) \leq \lambda_1^2 + \sqrt{(n-1)(\Delta - 1)G(H) - \lambda_1^2}.$$

Theorem 3.4. If H is a T₂ hypergraph with rank r and maximum degree Δ then $\epsilon(H) \geq \sqrt{n(\Delta - 1)r}$ equality hold if H is a hypergraph with $\Delta = m = n = 3$.

Proof. From lemma (25) in [6]

$$(\epsilon(H))^2 \ge 2(\sum_{i=1}^n \lambda_i^2)$$

$$\ge 2\sum_{i=1}^n \sum_{j=1}^m (a_{ij})^2$$

$$\ge 2\sum_{i=1}^n \sum_{j=1}^m (a_{ij})$$

$$\ge n(\Delta - 1)r$$

$$\epsilon(H) \ge \sqrt{n(\Delta - 1)r}.$$

Theorem 3.5. If H is a T_2 hypergraph then $\epsilon(H) \ge \sqrt{\left(\sum_{i=1}^n \lambda_i^2\right) + \left(\frac{16m^2 - 48m + 35}{4}\right)(\det A)^{\left|\frac{4}{4m-5}\right|}} \text{ equality hold if } m=3.$

Proof. The result immediately follows from (lemma30) in [6].

Theorem 3.6. Let H be a T_2 hypergraph with rank r and |v| = n then $\epsilon(H) \ge \sqrt{\frac{(r-1)^2}{n}W(H)}$ equality hold if H is a 3-uniform hpergraph with one edge.

Proof. From (lemma25) in [6]

$$\epsilon(H)^2 \ge 2\sum_{i=1}^n \lambda_i^2$$
$$\ge \sum_{i=1}^n \lambda_i^2$$
$$= \sum_{i=1}^n \sum_{j=1}^m (a_{ij})^2$$
$$\ge \sum_{i=1}^n \left|\frac{1}{n} (\sum_{i=1}^m (a_{ij})^2\right|$$
$$\ge 4\frac{(r-1)^2}{n} W(H)$$
$$\ge 2\sqrt{\frac{(r-1)^2}{n}} W(H)$$

Theorem 3.7. Let H be a T₂ hypergraph with rank r and |v| = n then $\epsilon(H) \ge \sqrt{\frac{(r-1)^2}{n}W(H)}$ equality hold if H is a 3-uniform hpergraph with one edge.

Proof. From (lemma25) in [6]

$$\epsilon(H)^2 \ge 2\sum_{i=1}^n \lambda_i^2$$

$$\ge \sum_{i=1}^n \lambda_i^2$$

$$= \sum_{i=1}^n \sum_{j=1}^m (a_{ij})^2$$

$$\ge \sum_{i=1}^n \left|\frac{1}{n} (\sum_{i=1}^m (a_{ij})^2\right|$$

$$\ge 4\frac{(r-1)^2}{n} W(H)$$

$$\ge 2\sqrt{\frac{(r-1)^2}{n}} W(H)$$

Theorem 3.8. Let H be a T_2 hypergraph with minimum degree δ and |v|=n then $\epsilon(H)^2 > \frac{W(H)}{n}$. Proof. From (lemma25) in [6]

$$\epsilon(H)^2 \ge 2\sum_{i=1}^n \lambda_i^2$$

$$\ge \sum_{i=1}^n \lambda_i^2$$

$$> \sum_{j=1}^n [|\frac{1}{m(m-1)} (\sum_{i=1}^n a_{ij})^2|]$$

$$> \frac{W(H)}{n}.$$

Lemma 3.9. Let H be a T₂ hypergraph with $n \ge 4$ and m edges then $\rho(A) \ge \frac{2n+13}{2(n-1)}$

Theorem 3.10. Let H be a T_2 hypergraph with $n \ge 4$ then $\epsilon(H) \ge \frac{2n+13}{2(n-1)} + (n-1) + \ln |\det A| - \ln \frac{2n+13}{2(n-1)}$ equality hold if H is a 3-uniform hypergraph with one edge.

Proof. We have

$$\epsilon(H) = \sum_{i=1}^{n} \lambda_i$$

= $\lambda_1 + \sum_{i=2}^{n} \lambda_i$
 $\geq \lambda_1 + (n-1) + \sum_{i=2}^{n} \ln |\lambda_i|$
= $\lambda_1 + (n-1) + \ln \prod_{i=2}^{n} \lambda_i$
= $\lambda_1 + (n-1) + \ln(\det A) - \ln \lambda_1$.

From lemma 3.9

$$\epsilon(H) \geq \frac{2n+13}{2(n-1)} + (n-1) + \ln|\det A| - \ln\frac{2n+13}{2(n-1)}$$

Theorem 3.11. Let H be a T_2 k-graph on n vertices and m edges. Then

$$\epsilon(H) = \le \rho(A) + \sqrt{(n-1)(nm - \rho(A))},$$

where $\rho(A)$ is the spectral radius of the adjacency matrix.

Proof. In $T_2 - k$ -graph, by using Cauchy Schwart inequality

$$\sum_{i=1}^{n} \lambda_{i} \leq nm$$

$$\rho(A) + \sum_{i=2}^{n} \lambda_{i} \leq nm$$

$$\sum_{i=2}^{n} \lambda_{i} \leq nm - \rho(A)$$

$$\epsilon(H) \leq \rho(A) + \sum_{i=2}^{n} \lambda_{i}$$

$$\leq \rho(A) + \sqrt{(n-1)\sum_{i=2}^{n} \lambda_{i}}$$

$$\leq \sqrt{\rho(A) + (n-1)(nm - \rho(A))}.$$

Lemma 3.12. Let H be a connected T_2 k-graph and A(H) its adjacency matrix. The hypergraph H is regular iff $x = (1 \ 1 \ 1 \dots \ 1)^T$

Theorem 3.13. Let *H* be a connected T_2 k-graph and A(H) its adjacency matrix then $\rho(A) \leq \frac{KW(H)}{\sqrt{n}}$ equality holds if *H* is regular.

Proof. In T_2 k-graph

$$\begin{split} \rho(A) &= \sqrt{\rho(A)^2} \\ &\leq \sqrt{X^T A^2 X} \\ &\leq \sqrt{\frac{(K \sum d(u, v))^2}{n}} \\ &= \frac{KW(H)}{\sqrt{n}}. \end{split}$$

Remark 3.1. Let H be a T_2 hypergraph with rank r, minimum degree δ and |v| = n then

- (i) $\sum_{i=1}^{n} \lambda_i^2 \geq n(r-1)\delta(H)$
- (ii) $\sum_{i=1}^{n} \lambda_i^2 \geq \frac{(r-1)^2}{3n} W(H).$
- (iii) $\sum_{i=1}^{n} \lambda_i^2 \geq \frac{m}{m-1} \lambda_1.$
- (iv) $\sum_{i=1}^{n} \lambda_i^2 \geq \frac{nm}{n+m-1} \lambda_1.$

Theorem 3.14. If *H* is a *T*₂ hypergraph then $\epsilon(H) \ge \sqrt{(n(r-1))\delta(H) + (\frac{16m^2 - 48m + 35}{4})(det A)^{|\frac{4}{4m-5}|}}.$

Proof. Use theorem 3.5 and remark 3.1

4 Conclusion

In this article, the adjacency energy of a T_2 hypergraph is obtained by using various graph parameters such as size m, rank r, Wiener index, Gutman index, maximum degree, minimum degree, spectral radius etc. In a similar way we can use other parameter also for calculating the adjacency energy of a T_2 hypergraph.

References

- [1] Alain Bretto, Hypergraph Theory: An Introduction, Springer, Science & Bussiness Media, 2013.
- [2] A. A. Dobrynin, R. Entringer, I. Gutman Wiener index of trees: Theory and applications. Acta Appl. math. 66(2001), pp. 211-24.
- [3] Cluade Berge, Hypergraphs: Combinotorics of finite sets, vol. 4, Elsevier, 1984.
- [4] I. Gutman, (1978) The energy of a graph. Ber. Math, statist. Sekt. Forschungsz. Graz, 103, 1-22.
- [5] Kaue Cardoso and Vilmar Trevisan, Energies of hypergraphs, Electronic journal of Linear Algebra, ISBN 1081-3810, A publication of the International Linear Algebra, society volume 36, pp. 293-308 may 2020.
- [6] Kaue Cardoso and Vilmar Trevisan, Renata Del-vecchio, Lucas portugal, Adjacency Energies of hypergraphs, arxiv:2106. 07042v1[math. co]Jun2021.
- [7] K Reijkumar and Renny P Varghese, Spectrum of (k, r)-regular hypergraph'International Journal of Mathematical Combinatorics 2(2017), 52-59.

- [8] P. Nageshwari and P. B. Sarasija, A study on energy of graph, International Journal of Mathematical Analysis vol8, 2014, no 58, 2869-2871.
- [9] Seena V and Raji Pilakkat, Hausdorff hypergraphs, International of Applied Mathematics 29(2016), num1, 145-15.
- [10] Seena V and Raji Pilakkat, T₀ hypergraphs, International of Applied Mathematics ISBN 0973-1768 volume13, num10(2017), PP. 7467-7478.
- [11] Seena V and Raji Pilakkat, T_1 hypergraphs, International of Applied Mathematics ISBN 0973-1768 volume13, num10(2017), PP. 7453-7466.
- [12] Simon Mukwembi, On the upper bound of Gutman index of graphs, match commun math comput chem 68(2012)343-348 ISBN 0340-6253.
- [13] Vitaly Voloshin, Introduction to graph and hypergraph theory, Nova 2009.